Improving Student Retention by Predicting Scholarship Renewal Eligibility with Machine Learning

dc.contributor.advisorAffonso, Lancie A
dc.contributor.authorSchaich, Mackenzie Jordan
dc.date.accessioned2022-03-25T17:38:36Z
dc.date.available2022-03-25T17:38:36Z
dc.date.created2019-05
dc.date.submittedMay 2019
dc.description.abstractSouth Carolina awards the Legislative Incentive for Future Excellence (LIFE) scholarship of up to $5000 to residents attending a public university who achieve two of three criteria based on high school GPA, ACT/SAT score, and class rank. Between 600 and 800 LIFE scholars enroll at College of Charleston annually. However, by the end of their freshman year, 47% of scholars fail to meet the renewal requirements. Of those who are ineligible for renewal, 45% fail to return to CofC the following semester. Identifying students who are at-risk of losing their LIFE scholarship is advantageous to both individual students and the institution. The statistical models trained for this project can accurately identify 76% of students will become ineligible to renew their scholarships based on data known at the time of class enrollment. In addition, we can group the students into different risk profiles so that targeted intervention can be undertaken to prevent students from losing eligibility.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://repository.library.cofc.edu/handle/123456789/5280
dc.language.isoen_US
dc.subjectpredictive analytics, student retention, six-year graduation rate, random forest
dc.titleImproving Student Retention by Predicting Scholarship Renewal Eligibility with Machine Learning
dc.type.genrethesis
dc.type.materialtext
thesis.additionaldegree.disciplineEconomics
thesis.degree.departmentComputer Science
thesis.degree.disciplineData Science
thesis.degree.grantorCollege of Charleston
thesis.degree.nameBachelor of Science
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SCHAICH-BACHELORSESSAY-2019.pdf
Size:
545.95 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LICENSE.txt
Size:
1.86 KB
Format:
Plain Text
Description: