
	
	
	
	
	
	

	
	

Front-End	 Development	 of	 a	 Learn2Mine,	 a	 Gamified	
Learning	 System	

	
	
	
	

An	 essay	 submitted	 in	 partial	 fulfillment	 of	
	

the	 requirements	 for	 graduation	 from	 the	
	

Honors	 College	 at	 the	 College	 of	 Charleston	
	

with	 a	 Bachelor	 of	 Science	 in	
	

Computer	 Science	
	
	
	
	

Jacob	 Dierksheide	
	

May	 2014	
	
	
	
	
	
	
	
	
	
	
Advisor:	 Paul	 Anderson	

	
	

Dierksheide 2

	 	
Abstract

Education through the web has become an increasingly popular phenomenon in recent
years. Online applications like Codecademy, Khan Academy, and Rosalind allow their users to
practice a variety of programming languages, core academic subjects, or other personal skills
through hands-on lessons and examples. These websites offer an attractive new ideology for the
learning process. They each fill a specific need for accessible guidance for newcomers to these
different fields that are becoming more and more necessary in today’s connected world. There is,
however, a void in the pantheon of these educational tools that need to be filled. None of these
sites teach true data science.

Data science is a rapidly growing subject in academics, with many universities recently
beginning to offer major courses of study in the field (Anderson, Argamon, Cheshire, Dubois).
Data science combines the needs for the application knowledge of computer scientists and
mathematicians with the specific domain expertise of the other scientists in order to gain
knowledge from existing data. One popular realm of data science, for example, is bioinformatics.
Those practicing bioinformatics may use their familiarity with gene sequences and their
programming capabilities to perform algorithms that may expose differences in expressed gene
traits between treatment groups. The practice of data science therefore requires a person to be
well versed in these many different fields. Attempts have been made to establish a web presence
for this sort of merging between a domain and informatics system through applications like
Weka (Hall et. al. 2009), RapidMiner (Mierswa et. al, 2006) and Taverna (Woltenscroft et. al.),
however there does not yet exist a platform that gives users exposure to all of these skills in a
way that is efficient. Learn2Mine has been introduced in an effort to fill that void. Learn2Mine is
an application consisting on 3 main parts: a Google App Engine web application as a front-end, a
Galaxy Project server, and an RStudio server. Each of these plays an important role in the
makeup of Learn2Mine, and interacts with the others to give users an extremely interactive
gamified platform through which to learn data science.

I. Introduction
A. Emergence of Data Science

As the analysis of large datasets becomes a more sophisticated and necessary field of study,
many major universities have begun offering degrees in Data Science or related topics like
Business Analytics or Data Mining. University of Washington, New York University and the
University of Southern California are just a few of the major institutions that offer a Data
Science major by name (Swanstrom 2012). For a long time data scientists had no individualized
training, but rather were people pulled from the math, computer science, or domain science
professions who were forced to adapt the skills they had learned from their respective fields.
Figure 1 shows the sources of education for people who end up practicing data science. Data
scienctists can come from a variety of tangentially related or unrelated fields, however no single
one of these backgrounds on its own could completely cover the skill set needed to truly practice
data science. A pure computer scientist has the experience in programming and creating that is
required to automate the analysis of big data. Mathematicians contain the knowledge of theory
and statistics necessary to create the algorithms for performing that manipulation. And finally
domain experts are familiar with the specific sciences and businesses needed to interpret the
results of an analysis. Each of these represent an important piece of the data science puzzle, but
none of them in themselves are able to optimally practice data science, therefore a specific

Dierksheide 3

program is needed to equip data scientists with the skills from each of these fields. For this
reason, major schools of higher education offer specific data science classes, however there is
little presence of proper education in the field on the web. Most other domains have websites
tailored toward effectively teaching the skills in an individual setting, Codecademy teaches
Python and JavaScript, Duolingo teaches foreign languages, but no major educational website
has come forth offering courses in data science. This is why Learn2Mine was created: to give
users a place to experience and practice all the different skills necessary to being successful in
data science.

Figure 1: Where Data Scientists Come From

B. The 3 Pillars of Learn2Mine
Compositionally, Learn2Mine is a web application that consists of the marriage of three

major parts. A Google App Engine front end is where Learn2Mine’s personality lies and where
the user is persisted. Much of the heavy lifting, however, is done through two additional project
servers: RStudio and Galaxy. Together, these three allow for a very comprehensive experience in
data science education.

Google App Engine is a Platform as a Service that lets people host their web applications
on Google’s infrastructure. Users can upload entire application directories, written in Python,
Java, or PHP to be served by Google through their Appspot website. This comes complete with a
Google Query Language (GQL) database that allows the persistence any necessary application
data. This branch of Learn2Mine is where users can look at their profile, find new lessons to
practice, and track their progress.

While Google App Engine is the face of Learn2Mine, and is where the User’s profile as
they know it exists, the meat of application lies in its integration with a Galaxy Project server.
The Galaxy Project is an open-sourced platform for running data intensive algorithms
(Blankberg et. al. 2001, Giardine et. al. 2005, Goecks et. al. 2010). Here is where the user’s
responses to the lessons are evaluated, and feedback given accordingly. For Learn2Mine’s
purposes, Galaxy has been extended with set of additional tools for the various lessons
Learn2Mine offers. Some of these tools are to be run directly on the Galaxy Project server, while
others are accessed through interfaces built directly in to the lessons pages located on Google

Dierksheide 4

App Engine. The outputs of these specialized lessons are sent to a single Grade tool, which
compares the results to the expected output and if earned, awards the user a badge. This process
will be described in greater detail later.

Learn2Mine also makes use of an RStudio server to give users a place to write and run
code written in R, a powerful language for data manipulation that Learn2Mine offers lessons in
using. RStudio is a cloud-based Integrated Development Environment (IDE) that allows its users
to write, run, and save R scripts, as well as interact with a console for more dynamic R coding.
This facet of Learn2Mine serves as a useful tool for the practice of the exercises that it provides.
Users can then copy their code and/or output (depending on the problem specifications) for
submission to Galaxy. RStudio also allows personalized directories through users on the machine
on which it is being run, therefore each person who logs into Learn2Mine is given their own
personal workspace here they can save, modify, and upload any files they might want to interact
with through the IDE.

Figure 2: Learn2Mine Components and their Interactions

C. Gamification
The ideology that drives the development of Learn2Mine is the use of gamification in the

learning process. Gamification’s aim is to bring the positive aspects of games together with
education in order to make the task of learning more engaging and rewarding. It is important to
note that gamification is not simply learning through educational games (also known as “edu-
tainment”), but is the implementation of popular game concepts in a non-game setting (Deterding
et. al. 2011, Gerber 2012). These concepts include things like reward schedules, feedback, public
reputation, advanced user paths, and content unlocks (Direkova 2012, Glover 2003, Muntean
2011, Nah et. al. 2013). Learn2Mine attempts to make use of these features in order to make its
users’ experience highly goal-oriented and absorbing, as gamification has been shown to
increase a user’s engagement with an application (Thom et. al. 2012). Through an unlimited
allowance of lesson submissions, Learn2Mine grants the permission to fail, and gives
instantaneous feedback, which is a much more efficient reward system than the delayed feedback
of a more traditional classroom education setting.

Dierksheide 5

II. Methods of Design
A. User Identity

 An important facet of gamification is a sense of user identity. When a user first accesses
the Learn2Mine they are asked to log in using a Google account. This log in is authenticated
through OAuth 2.0, which is a standard and open protocol for application authorization on the
web (Oauth, 2014). The use of this Google account makes Learn2Mine easily accessible to
newcomers, and means that there is no additional memorization of any additional username or
passwords. Once the login has been accepted, a query is run to see if a user with that email
already exists in the datastore. If the user is found, they are simply redirected to the Home page.
If the user does not exist, a new object of the User class is created and saved into the datastore
using a put() statement. This User class contains 5 important fields: EMAIL, BADGESEARNED
(a list of the badges that the user has completed so far), BADGESDUE (a list of the badges the
user is owed, but have not been awarded yet), SKILLSEARNED (a list of the broad skill
categories that have been completed, that do not correspond to a lesson), and SESSION (a
unique 21-digit integer used to identify the user).

B. Badges

The goal of users on Learn2Mine is to complete
lessons on the various algorithms and skills it provides
in order to earn badges. These badges serve as the
primary reward system of the website, and supply
tangible proof of the fact the user has mastered that
skill. The implementation of these badges is done
through another increasingly popular mechanism:
Mozilla OpenBages. OpenBadges is an online standard
hosted by Mozilla that allows the free presentment of
badges by any organization, which can then be added to
a “Mozilla Backpack” and displayed on various online
profiles to serve as a sort of “virtual resume” for the
user (Mozilla, 2014). These badges are not proprietary,
and are simply held and managed by Mozilla. The
authenticity of these badges therefore must be provided
by the awarding organization through JSON files kept
by that organization. When a user submits a lesson for
grading to Galaxy and the lesson is deemed “mastered” by the grader, a new JSON file for that
user is written on the server side. This JSON file includes the user’s email, the lesson they have
completed, the time it was completed, an image representation of the badge, and links to
additional JSON files that authorize both the specific badge and the organization granting it. The
link to this publicly available file is then sent through an interface to Mozilla, which verifies the
different component fields of the JSON object and, if all are acceptable, passes the link to the
user’s backpack where it is then saved. An example of what these badges look like can be seen in
Figure 3.

Figure 3: Example Learn2Mine Badge

Dierksheide 6

C. The Skill Tree
While users can employ their Mozilla backpack to hold their badges and display them on

their own personal website, Learn2Mine uses it’s own method of displaying them in the form of
an interactive skill tree. The skill tree serves as the user’s “Profile” on the Learn2Mine front-end
website. Though users are free to do the lessons in whatever order they please, the flow of the
skill tree and logical progression of the subjects within it satisfy several important aspects of
gamification like increasing complexity and content unlocks. By giving users a suggested, but
not absolute path through which to traverse the sites lessons, Learn2Mine allows them to learn at
their own pace whether that means moving through lessons one at time, taking a breadth-first
approach to the tree, or jumping right into the more advanced lessons. The skill tree begins
completely grayed out, and becomes colored in as the user completes each skill, giving another
layer of visual feedback to their accomplishments.

The actual skill tree is rendered by use of a jquery tree object that is outlined on the page
Profile.html through JavaScript. The actual content of the graph is defined through a JSON
variable called networ_json. This variable contains a list “nodes”, filled with representations of
graph nodes with an id for the node and a link that the node should point to (the lesson’s page),
as well as a list of edges, which define a source and a target node id that should connect 2 nodes
on the graph. Another variable, style, has a list of image links paired with the node ids that fill
the skill tree with the badge images. The links to these images, rather than be directly hard-coded
into the Profile.html file, are generated dynamically through a function makeTemplateValues()
which is called from the file skillTree.py, and passed through template values when the page is
rendered by Google App Engine’s main. Adding new lessons to the skill tree is therefore as easy
as defining a new “node” and a new “edge” for the desired skill to the networ_json variable, and
adding the lesson identifier to makeTemplateValues()

Figure 4: The R branch of the Skill Tree

Dierksheide 7

D. Leaderboards
 Another common theme in the implementation of gamification in anything is the
development of a sense of community between the people engaging in it. This allows for
competition and collaboration to drive the educational process. Learn2Mine seeks to provide this
in the form of Leaderboards that shows the top scoring users along with their record-setting
scores publicly on the site. The ability of a lesson to have a leaderboard of course depends upon
the content of that lesson, however a few prototype leaderboards have been made for lessons in
which they make sense. The k-Nearest Neighbor lesson, for example, asks users to successfully
classify as many test cases as they can of a famous diabetes training set as they can using either
their own algorithm (the advanced track) or one that is provided for them (the standard lesson).
Though the standard lesson can only produce so many different levels of success due to its finite
number of inputs, by writing their own k-Nearest Neighbor function using sophisticated
processes like genetic algorithms the rate of success can be drastically improved. When using the
kNN tool, a special “score” variable representing the percentage of correctly classified cases is
passed along to Learn2Mine. This value is then checked against a python list stored in the
Google Datastore that contains the current top 10 scores for that lesson. If this score beats any of
the ones in question, it is placed within the list and the rest of the top 10 are shifted down 1 slot
each. Users can therefore measure their success in a lesson against the rest of the Learn2Mine
community, and hopefully use their place on the leaderboard (or lack thereof) as motivation to
rework and improve their algorithm. When the user accesses a leaderboard page, it pulls this
top10 list for the appropriate lesson, and generates an HTML table by iterating through it. The
result of this can be seen in Figure 5.

Figure 5: k-Nearest Neighbor Leaderboard page

E. Google App Engine Application Structure
 Hosting an application on Google App Engine is as simple as uploading a directory with
a few necessary components to Google Servers using their SDK for the appropriate language.
The first is a YAML file that needs to be called app.yaml. This file defines several important
pieces of information about the application, including name, language specifics, and version.
Any handlers for scripts or static directories that are to be interacted with in the application code
are to be declared in this file as well. For example, Learn2Mine is able to access images in the
/images directory because of the following code snippet found in its app.yaml
 handlers:
 - url: /images

Dierksheide 8

 static_dir: images
Most important in this under this list of handlers is that of url: ./*, this must point to a
WSGIApplication object (WSGIApplication is a class that can be found in the webapp2
framework. Here Learn2Mine has:
 - url: ./*
 script: main.app
This tells Google App Engine that when a user requests to learn2mine.appspot.com, the
application is to look to the app variable in the top directory’s main.py file to decide how to
handle that request. The WSGIApplication is instantiated with a list of strings/class pairs to tell it
what how this redirection should work. For example, one such pair is (“/Home”, HomeHandler).
Therefore when a user requests the page learn2mine.appspot.com/Home, the HomeHandler class
is called to render the page.

One advantage to building a web application as opposed to simply a series of static
HTML pages is the ability to use templates to generate content on each page. A template allows
for variables, or even stretches of code to be written into the HTML files, which then are filled in
or executed by the application upon rendering the page. Learn2Mine uses the JINJA template
engine to perform all of its rendering. A common example of this is the display of the currently
logged in user on each page of Learn2Mine. Within the div block that holds the navigation bar
on each page of HTML is the text {{user}}. The handler for each page makes a python
dictionary for with an entry for each piece of the template that that page needs filled in. In this
case, the datastore is queried for the currently logged in user, and the EMAIL field of that user is
stored in a variable called “email” and passed into the dictionary as {‘user’:email}. This
dictionary, called template_values is then given to the HTML through the statement:

self.response.write(template.render(template_values))
This statement replaces all elements that match the key of any item in the dictionary, surrounded
by double braces (in this case {{user}}) with the matching dictionary value (email). It also
evaluates any other code statements that may be present in the page.

F. Learn2Mine’s Layout

The bulk of the user’s experience with Learn2Mine is decided by their interaction with
the Google App Engine front end of the application, therefore a lot of time was spent trying to
make this face of the operation as clean and friendly as we could. Nearly every page on
Learn2Mine features the same minimalistic layout. A thin banner, reading the title of the site
Learn2Mine spans the top of the page horizontally and links back to the Home page. Floating to
the right of this is the logo for the Anderson lab, the umbrella under which the project resides,
these can be seen at the top of Figure 6. The color scheme for the Learn2Mine logo is blue, red,
yellow, and green all in deep, understated shades. These mirror the 4 colors that represent the
different branches of the Anderson lab. The interplay between these two logos creates a visually
interesting but not overwhelming header to the page. Directly under this heading is a thin black
bar that provides the necessary links for navigation around the main areas of the site (Home,
Profile, Leaderboards, Grade, About, and Help). In the early stages of Learn2Mine these links
were more colorful, also reflecting the core 4 colors, but were just hyperlinks. These links were
later redesigned to be colored buttons, with hand-drawn icons signifying each of the link’s
locations. These buttons later proved to be a bit overpowering and busy, and the hover image
would often take a fraction of a second to load, that would make the button seem to disappear,
which did not look very good to interact with. For these reasons this navigation bar was later

Dierksheide 9

redesigned to a simpler charcoal and white colored button, with clean type centered text. The
hover interaction was made to be simply a lighter shade of the background color, so the
application no longer needed to retrieve the image on the user’s hover over the link, giving the
buttons a more responsive feel. Floating right of these buttons is the current user’s email, as was
described earlier.

These two components: the banner and the navigation bar, make up a uniform heading
across all of Learn2Mine. Beneath that is then the main content of the page in question. For most
pages, this merely consists of any relevant information/links about the page (a Lessons Page has
the text for the appropriate lesson, the About page has the Frequently Asked Questions, etc.),
however the exception to this is the Home page which features and additional component: the
Pageslide. This pageslide comes from the jquery library and is a stationary tab on the right hand
side of the page that displays the user’s earned badges. When the user loads the Home page, the
current User is queried from the database, and their BADGESEARNED field is retrieved. This
field is a list of lesson identifiers in the form of string, which can be linked to their appropriate
badge images by appending “Mastery.png” to each. Each item in the list is therefore placed into
a string representing an HTML image tag like this:

“”
all strings are joined together resulting in a single long string of html image tags, which is passed
into the pageslide using a template, which will be discussed in more detail later. The outcome of
this can be seen one the right hand side of Figure 6 below.

Learn2Mine has to account for the fact the people of all different screen orientations and
resolutions will be potentially viewing the website. The content of the site looks best when given
a block (in html terms, a “div”) of fixed width that is centered within the page. This way, a
narrow screen will not force the text to be squished horizontally, making the page very long and
causing unreadable breaks in the words, but at the same time a very wide screen will not make
the text appear too sparse. 960 pixels was chosen as the standard width for the bloc, since on
most laptop resolutions this will fill the majority of the page space while still leaving things tight
enough to not appear stretched. Centering the block serves to break up the expanse of white
space off to the right that would appear in overly wide screens with a fixed width content area as
well. Making this stylistic “rule” is not excessively difficult with the user of a Cascading Style
Sheet (CSS), which is a handy tool in formatting HTML. The centering, which is done uniformly
across all pages, is signified by a defining class in the main.css file, which looks like this:

.container{
 margin-left: auto;
 margin-right: auto;
}

This means that any div class in the HTML that is given the attribute “class=container” will have
its horizontal margins automatically sized according to the width of the page, effectively
centering it. The only significant factor that affects how these containers should be formatted are
the existence of a pageslide. Most pages, which do not contain the pageslide, are marked by the
id “NPStext” (for No Pageslide Text) given to the div of the container class which specifies that
left and right padding should be 50 pixels, pulling it away from the edges a little bit and making
it more easily readable by the user. Otherwise, on the Home page, the same class is marked by
“PStext” and is given a left padding of 50, but a right of 350, pulling it away from the pageslide
(which is of width 300 pixels), and making sure no text gets hidden underneath it.

Dierksheide 10

Figure 6: Learn2Mine Home Page, example of container/PStext layout

Clicking on any of the badges in the skill tree will bring up the analogous lesson for that
skill. Each Learn2Mine lesson walks the user through the necessary information they need to
understand the algorithm to assignment that they will be attempting to successfully complete in
order to earn their badge. Because each of the lessons require several pages of explanation, it
would be inefficient to write up to six or seven separate HTML pages for each individual lesson.
Therefore, a single HTML template page was written to house all of the generic lesson
information, and is filled in by the LessonsHandler class in the main.py that drives the websites
services. When the user navigates to a lesson from the skill tree, they are sent to an address like
the following: http://learn2mine.appspot.com/Lessons?lesson=knn1. This directs them to the
Lessons template page. The portion of the URL after the “?”, known as a query string, provides a
key value pair that is used to identify which lesson needs to be rendered on the page. This
information is retrieved by the main() function, and then to another python function that takes
that value as an input and returns all of the necessary text to fill out the page with the fill lesson.
Take, for instance, in the URL example mentioned previously. The lessonWriter() function
would accept the term “knn1”, and return the body of the first page of the k-Nearest Neighbor
lesson, as well as other specifics to that page. Using this method for page creation also serves to
make the addition of new lessons very straightforward, which is a feature that Learn2Mine
strives to allow. A user with access to the source code of Learn2Mine need only to add an elif
statement to the lessonWriter() function, and specify the necessary text about the lesson to be
filled in by the template. By writing directly in HTML here they are also able to use additional
HTML tags and features not directly listed in the template, if their lesson should require it.

G. Types of Lessons
 There are two different types of lessons that appear on Learn2Mine, reflecting different
levels of difficulty. The first of these henceforth referred to as “tool lessons” interact with
predefined Galaxy Tools. These lessons provide an explanation of a specific algorithm, geared
toward anyone with no prior knowledge of data science practices. Once the user has been
carefully exposed to the algorithm and its uses, they are presented with a specific dataset on
which they are expected to perform it, often with a specified goal. For example, the lesson in the
k-Means algorithm provided a set of data recorded from various earthquakes, and asks them to
use k-Means to classify the earthquakes in such a way that minimizes within-cluster and

Dierksheide 11

maximizes between-cluster variation. Users then interface with a pre-written Galaxy tool in order
to perform this operation. Because in these cases the code is all pre-written for them, the user’s
interaction with the algorithm is fairly minimal in these cases. The k-Means tool for example
only really allows the user to set the k parameter to influence their success with it. Though
minimal in the users influence over their outcome, the tool lessons allow for a great introductory
understanding of how these algorithms work by letting them see how the manipulation of
different inputs or methods affects the outcome. These tool lessons also all have specifically
formatted outputs with dynamic visual representations of the results, which further aid
understanding.
 Alternately, there are lessons that require users to write code themselves in order to
complete them. These lessons all require the use of a single Galaxy tool (called Grade Code), in
order to be graded. Rather than run an algorithm to evaluate output, these R lessons take the
output of code the user is expected to write themselves in RStudio as an input. These input
results are then parsed into individual problems (as will be explained in greater detail later) and
matched to expected values in order to determine whether or not the lesson has been passed.
These lessons offer far less handholding than the tool lessons, and are designed to teach the users
how to design, write, and practice data science algorithms for themselves, rather than just gain a
familiarity with what they do. These R lessons were developed and piloted for the College of
Charleston’s Data Science 101 class in the fall of 2013.

H. Galaxy Tools

Fitting the Galaxy Project to the needs of Learn2Mine required the extension of it
through the addition of new “tools.” Tools are the basic driving force behind a users interaction
with Galaxy, upon arriving at the home page; they may select an individual tool from a variety of
categories ranging from simple Text Manipulation to more complex sets like Multiple
Regression Analysis and Metagenomic Analysis, these tools are chosen from the toolbox, which
can be seen as the red-shaded area marked 1 in Figure 7 below. Users can then provide inputs to
the tool’s interface, which could be anything from simple parameter options to entire uploaded
datasets. Once these inputs have been set, executing the tool fires off a script with those inputs as
command line arguments. This script can be written in any language installed on the serving
machine, provided that language is run through an interpreter, rather than a compiled language.

Figure 7: Galaxy Tool Interface

Dierksheide 12

Therefore, each Galaxy tool is made up of 2 primary files: an XML file that defines the
tool and necessary parameters, and the script that actually does the work on the outputs. The
XML file defines the front-end interface of the tool as it will be presented on to the user. A set of
specific XML tags are documented and described on the projects website to help with the
development of new tools. Within this file you can define the inputs, outputs, tests, and any sort
of description about the tools, which will then be parsed by Galaxy and formatted accordingly.
The areas marked 2 and 3 on Figure 7 above show the results of the tags used in the XML file.
The green area, marked 2, contains everything declared within the <inputs>. The file knn.xml
declares 6 <param> tags within its <input>, which translate to the interface as it appears, these
are:

1. An integer (max 3 digits)
2. A Training data file
3. A Testing Data file
4. Exclusive radio buttons for whether or not the data in the files have headings
5. Exclusive radio buttons for whether or not the user wants the tool to evaluate

using their personal script
6. A text area for the path to their script (called if input 5 is marked yes)

Below this, the yellow area marked 3, is any information about the tool that may be needed for
its use. This, too is defined in the XML
within a <help> tag. This information
includes common things like information
bout each of the inputs, or about frequent
errors the tool may run into and how to
handle them. Within the help tag are special
codes for symbols that may help direct the
user’s attention toward them, for example
typing ..class:: warningmark makes the
yellow warning mark that can be seen before
“Common Problems” in Figure 7.

The tools added for Learn2Mine’s
purposes call a Python script upon execution.
The number and types of the inputs are
dependent on the specific algorithm the tool
is made for, however each of these tools
generates 2 outputs: the first is simple
comma-separated-value representation of the
results, while the second is an HTML
representation. The CSV output is uniquely
and predictably formatted so that the
algorithm’s outcome may be graded for
completion by Learn2Mine, while the HTML
is a much more user-friendly embodiment of
these results that can be easily understood
and provide dynamic feedback about the
user’s inputs. For the actual performance of the algorithms, the tools added for Learn2Mine’s
purposes first call a Python script upon execution. This Python script grabs the inputs passed

Figure 8: Formatted HTML Tool Output

Dierksheide 13

into the tool, and then uses them as inputs for a second script, which is written in R. Here is
where the actual algorithms are performed on the data. While R is very good at this sort of
intensive calculation and data management, it is not as straightforward when it comes to
presenting it. Therefore, once the algorithm has been finished the necessary outputs are written to
a temporary directory (which is initiated for each run of any tool). The location of these outputs
are then captured by the initial Python script, which writes a nicely formatted HTML file to
display and explain the results to the user, an example of which can be see in Figure 8.

Once the tool has finished running, the two outputs become available in the “History”
panel, the blue-shaded area marked 4 in Figure 7. One very advantageous feature of Galaxy is
that it supports the output of one tool to be used as input for a next one. Learn2Mine utilizes this
in order to perform its grading. This is all done through a specialized tool called the “Submit
Data Tool”. Users simply select their CSV output from the tool they ran, then pick from a drop-
down list which lesson standards they want it graded using. The Submit Data Tool then passes
the CSV results along to a grader() function, which parses the data according to the chosen
lesson and evaluates it against predetermined thresholds for each lesson in order to determine if
the user has passed the lesson. If the lesson is indeed passed (or, in Learn2Mine’s terms, if
“Mastery” is achieved) then the application on Google App Engine is notified through a POST
request, which sends to a specified link (/Grade) the email (which is retrieved as the user is
logged into Galaxy), the lesson, and, if applicable for leaderboard purposes, the score of the
user’s submission. /Grade then responds by appending to the User class associated with that
email’s BADGESDUE field the name of the lesson that was submitted.

I. Changes Over Time

Since the beginning of its development in the summer of 2013, Learn2Mine’s marriage
with Galaxy has become more and more streamlined and is further approaching a seamless
connection for the user. Initially, Learn2Mine required users to link over to Galaxy for them to
perform all of their lessons. Here, the users would input various parameters into the preset tools
to learn how the different factors would affect their algorithm’s results. This was a good
introduction to the algorithms, however it was fairly rudimentary by design, so the concept of
“advanced lessons” was added. These advanced lessons asked the users to write their own
algorithm in RStudio to try to create a more optimal version of the algorithm. For example, the
lesson written for k-Nearest Neighbor challenged them to use a genetic algorithm result in a
better classification ratio than the one we prepackage for them is able to achieve with a provided
Diabetes dataset. This allowed for users to get a more meaningful learning experience out of the
application by requiring them to get their hands dirty and manipulate code for themselves. This
was an effective step up in the difficulty of the system, however could be quite a challenging feat
for those users who did were not familiar with code, particularly since R is such a unique
language. To create an effectively gamified system, it was important to strike an appropriate
balance between these levels of freedom. Holding the user’s hand too much through the process
would devalue their experience and the associated reward system or, alternatively, making it too
open ended would rob them of concrete goals to work toward to advance in the “game” (Asaj et.
al. 2012).

The addition of more basic lessons in R programming came about when Learn2Mine was
introduced to the Data Science 101 class in the fall of 2013. These students piloted the program,
which led to the creation of several new lessons for their purposes. These students were coming
at R from an area of little to no programming background, so the lessons had to be able to build

Dierksheide 14

their knowledge from the ground up. An immediate solution to this was the creation of a new
tool to encompass all of the lessons tailored to the class. This tool was very simplistic, and
featured only a text area, and a drop down box that contained the potential lessons they could be
submitting it as. Lessons asked that students write code to solve a series of posed problems in
RStudio, then copy and paste their responses into the text are for submission in the following
format:

1)
Problem 1 solution
2)
Problem 2 solution.

This way, a multitude of these introductory data science and R coding lessons could be

created without having to make a completely new tool for each one; which would clutter up the
toolbox. However, though some level of understanding can be measured through the answers to
these questions, to really test a person’s programming understanding we needed a way for them
to submit their code for grading directly. To do this, an R file was saved into the myTools
directory, which contained code for the correct solutions to the problems. For example, one such
problem asked the user to create a function to sum 3 inputs, to be called my.sum(). A file to
grade this lesson (called Grade.R) contained its own function to compute this called
solution.my.sum(). When the user passes in their my.sum() function in, it is imported into the
solution file, and both the my.sum() and solution.my.sum() are read with the same inputs. The
Grade.R file then checks that the return value of both functions are equivalent; if this is the case,
the solution is marked correct, and if all solutions for that lesson are correct the lesson is
considered “Mastered”.
 This redesign of the manner in which lessons are created made things significantly easier
for both the user to engage in and the developer to create new content for Learn2Mine.
Condensing it all into one tool made the interface much cleaner, and by plugging the Submit
Data tool’s code into this Grade R Code tool allowed for the removal of the extra step of using
the Submit Data tool on it’s own. The text area input also greatly diversifies the types of inputs
students can give, and therefore of questions that can be asked of them. However, though an
improvement this system was still not as effective as it could be. The self-separating of answers
was not an intuitive system for newcomers, requiring direct and frequent explanation, as well as
granting the potential for a large number of syntax errors or discrepancies that could claim
incorrect results due to ill-formatted responses despite the user performing the algorithms
correctly. Additionally, the back-and-forth navigation between the Google App Engine and
Galaxy faces of Learn2Mine became cumbersome, as users would have to log in to 2 or 3
different systems just to complete a lesson. Therefore the user’s experience was once again re-
evaluated and the site was redesigned to its current state.

The goal became to make the Learn2Mine experience as singular as possible. This was
achieved by using the publicly available Galaxy Application Programming Interface (API).
Rather than having the users link to Galaxy directly, and interact with that interface, all of their
activity could be confined to the Google App Engine front by use of the methods defined in the
Galaxy API. Now, instead of simply explanations of the lessons they are to go and accomplish
elsewhere, the page for a specific lesson includes an individual TextArea for each question that is
poses. Users then have clearly defined places to respond to each question. Figure 10 shows an

Dierksheide 15

example of a page that utilizes this layout, the Basic R lesson. The Basic R lesson contains 10
different questions, the first 3 of which are shown in the figure. Once they have an answer for a
question and have entered it into the appropriate TextArea, they may click a button beneath the
TextArea to submit that answer for grading. At this point, a JavaScript function is fired off,
which collects the answer and some necessary values (keys in the form of strings known as
workflow ids to Galaxy) are delivered via a POST request to the /OnSiteGrader link on
Learn2Mine. This then tosses the information to a post() function in the class GradingHandler in
the main.py of the Google App Engine. This main.py file imports the galaxy_api library, which
gives it access to a function called workflow_execute_parameters(), this function allows the
remote execution of a galaxy tool, and retrieval of its response. By passing this function the code
and email of the user, as well as some of the aforementioned specific key values, Galaxy has
everything it needs to run its grader code to evaluate the user’s response. The process of
executing a Galaxy tool can often take a few seconds, so a refresh button below the TextArea
allows them to keep requesting their results until they are ready. The user is then notified of
whether or not they answered the question successfully.

Figure 9: Basic R Lesson

Dierksheide 16

This ability to separate questions also set the groundwork for a progress bar on each lesson

page. This progress bar is built according to the number of questions the page poses, and fills
according to how many have been answered correctly. Once the all questions have been
completed and the progress bar fills, the user is presented with an image of the badge they have
just earned. This new system is much more dynamic and friendly to those unfamiliar with the
Learn2Mine system, or those who are not being taught in a classroom setting. Additionally the
progress bar and displaying of the badge are further areas Learn2Mine is able to implement
gamification to enhance the learning experience. Completion of individual questions filling the
progress bar offer further opportunities for feedback, serving as little “checkpoints” of their
progression through the lesson. The immediate displaying of the badge image is a similarly
rewarding additional point of feedback.

III. Results
 Learn2Mine was piloted in the College of Charleston’s Data Science 101 class in the fall
of 2013. Throughout the semester, students interacted regularly with the website both inside and
out of class on a regular basis in order to complete assignments that counted toward their grade.
At the end of the semester, students of the class were asked to complete an anonymous survey
posing a series of statements meant to reflect their experiences with Learn2Mine and their
opinions of it. These statements were to be responded to on a 1-5 scale, 1 meaning “Strongly
Disagree”, 2 meaning “Disagree”, 3 meaning “Neutral”, 4 meaning “Agree”, and 5 meaning
“Strong Agree” and were as follows:

1. The automatic feedback on correctness increased my motivation to complete the
homework assignments.

2. The visual representation of accumulating badges and gaining skills moved the focus on
learning rather than obtaining high marks from the instructor.

3. The ability to retry assignments improved my ability to learn and understand the material.
4. A student said “You have managed to create something that is so frustrating, yet so

rewarding when finished. There is no greater feeling than getting the badge.”
5. I would consider continuing to use Learn2Mine in other courses or in future studies of

data science.

Table 1: Results of Anonymous Survey of Pilot Class
 Strongly

Disagree
Disagree Neutral Agree Strongly

Agree
Median Mean

Statement 1 2 0 3 17 10 4.11 4
Statement 2 1 6 7 12 7 3.6 4
Statement 3 0 0 5 10 18 4.4 5
Statement 4 2 4 3 14 10 3.89 4
Statement 5 2 4 3 15 9 3.8 4

Dierksheide 17

Figure 10: Results from each statement

Table 1 shows the number of observations of each response for each of the 5 statements, as well
as the mean and median of the 1-5 values for each of those statements. As the Figure 11 and
Table 1 show, attitude toward Learn2Mine was generally positive. Both mean and median for all
statements was above the “Neutral” mark of 3, with most resting around the “Agree” at 4. The
least-agreeable statement was #2, concerning whether or not the badges shifted the focus to the
actual educational process rather than grades. When given in a classroom setting like this, where
ultimately grades are an important factor this outcome makes sense, and it was striking that this
statement was even able to get the generally positive response that it did. The two questions that
got the best response, each with a mean falling between the “Agree” and “Strongly Agree” fields
were questions numbers 1 and 3, both of which dealt with the instantaneous nature of grading
through Learn2Mine. Students tended to greatly enjoy both the automatic feedback that could
help them understand their mistakes shortly after making them (as opposed to the system of
waiting several days that traditional grading often employs) and the ability to resubmit their work
multiple times. This forgiving submission system allowed them to take greater risks with their
practice of the lessons, and to learn through trial-and-error. This survey also allowed the students
to lend any general comments they had about the system. A common problem this pilot class

Dierksheide 18

commented on as far as the interface is concerned was the multiple logins between the three parts
of the system (“too many steps to submit”, “having to go to Galaxy, Learn2Mine, and RStudio
was a nuisance”) a problem that has since been addressed with the updated integrated Lessons.

IV. Future Work
 Learn2Mine is a project that will continue to grow and evolve over time, ever seeking to
be the go-to source for Data Science education on the web. The next big step for the project will
be exposing it to a community of potential developers by making it open source. By making the
source code free and accessible to all, it is the hope that Learn2Mine will undergo rapid
improvement as newly interested parties with different ideas and different programming
capabilities able lend a cooperative hand to its development. Moving the project to this state will
also allow people and organizations to not only expand its main code base, but also use the code
to expand it for their own specialized purposes, similar to what we have done with the Galaxy
Project’s open source code. Through this specialization Learn2Mine could have the potential to
take a variety of different forms in order to reach all manners of domains.
 Getting the project to this point will require a few different adjustments. First is the
addition of documentation. Comments are plentiful throughout the Learn2Mine code base in
order to explain statements as they happen, however it lacks any wider-view explanations of its
workings on a grander scheme. Instructions for how to develop code for Google App Engine
according to our trends, and importantly how to add lessons to Galaxy will significantly cut
down on the time it takes for any developers to get started doing meaningful work fixing and
expanding the project. On top of this addition, a few changes will need to be made to
Learn2Mine’s existing code base for it to become generalized enough for the world at large to
potentially contribute. Specifically, there are several places in the code base where passwords of
the learn2mine-server virtual machine are hard-coded in, in order to automate things like user
creation. These will need to be scrubbed and replaced with placeholders, which those who plan
to host their own servers can replace with their personal passwords. This, too, will need to be
explained in documentation.

V. Acknowledgements

Learn2Mine was the brainchild of Dr. Paul Anderson, head of the Data Science department at
the College of Charleston. The project was developed under his guidance by Clayton Turner and
myself; both of us undergraduate students at the college. Clayton was responsible for the back-
end development of the application’s processes, while my own development work dealt with the
front-end interface and its integration. On behalf of all of us on the Learn2Mine team we would
like to thank the Experimental Program to Stimulate Competitive Research, Institutional
Development Award (EPSCoR/IDE) for funding the beginning of the project, and the College of
Charleston for the use of the facilities.

Dierksheide 19

VI. References
Paul Anderson. Data Science Program. http://datascience.cofc.edu/.
Shiomo Argamon. Data Science @ IIT.http://www.iit.edu/csl/cs/

programs/undergrad/datascience undergrad.shtml.
Naim Asaj, K Bastian, Mark Poguntke, Florian Schaub, Michael Weber,Daniel Ritter, Dominik

Deuter, and Fabian Groh. Gamification: Stateof the Art Definition and Utilization. In
Research Trends in MediaInformatics, pages 39–45, Ulm, Germany, 2012.

Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, GuruprasadAnanda, Ross Lazarus,
Mary Mangan, Anton Nekrutenko, and JamesTaylor. Galaxy: A web-based genome
analysis tool for experimentalists.Current protocols in molecular biology edited by
Frederick M Ausubelet al, Chapter 19, 2001.

Coye Cheshire. UC Berkeley School of Information: Data
Science.http://www.ischool.berkeley.edu/research/datascience.

Sebastian Deterding, Miguel Sicart, Lennart Nacke, Kenton O’Hara, and Dan Dixon.
Gamification. using game-design elements in non-gamingcontexts. In Proceedings of the
2011 annual conference extendedabstracts on Human factors in computing systems - CHI
EA ’11, pages2425–2428, New York, New York, USA, 2011. ACM Press.

Nadya Direkova. Game On: 16 Game Mechanics for User Engagement,2012.
http://www.slideshare.net/gzicherm/nadya-direkova-game-on-16-design-patterns-for-
user-engagement.

A. Dom´ınguez, J. Saenz-de Navarrete, L. De-Marcos, L. Fern´andez-Sanz, C. Pag´es, and J.J.
Mart´ınez-Herr´aiz. Gamifying learning experiences: Practical implications and
outcomes. Computers & Education,(63):380–392, 2012.

Philip L. Dubois. UNC Charlotte: Data Science and Business AnalyticsInitiative.
https://dsba.uncc.edu/academic-programs.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, andI. Witten. The WEKA Data
Mining Software. SIGKDD Explorations,11(1):10–18, 2009.

Hannah Gerber. Can Education be Gamified?: Examining Gamification, Education, and the
Future.http://shsu.academia.edu/HannahGerber/White-Papers, 2012.

Belinda Giardine, Cathy Riemer, Ross C Hardison, Richard Burhans,Laura Elnitski, Prachi Shah,
Yi Zhang, Daniel Blankenberg, Istvan Albert,James Taylor, Webb Miller, W James Kent,
and Anton Nekrutenko.Galaxy: A platform for interactive large-scale genome analysis.
GenomeResearch, 15:1451–1455, 2005.

Jeremy Goecks, Anton Nekrutenko, and James Taylor. Galaxy: acomprehensive approach for
supporting accessible, reproducible, andtransparent computational research in the life
sciences. GenomeBiology, 11:R86, 2010.

Ian Glover. Play As You Learn : Gamification as a Technique forMotivating Learners.
http://www.editlib.org/p/112246?nl, 2003.

Karl Kapp. The Gamification of Learning and Instruction. Pfeiffer, SanFrancisco, CA, 2012.
Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, andTimm Euler. YALE: Rapid

Prototyping for Complex Data MiningTasks. In Proceedings of the 12th ACM SIGKDD
international conferenceon Knowledge discovery and data mining, volume 2006,
pages935–940, 2006.

"Mozilla Open Badges." About. Mozilla, n.d. Web. 23 Apr. 2014.
Cristina Ioana Muntean. Raising engagement in e-learning throughgamification. In The 6th

International Conference on Virtual LearningICVL 2011, pages 323–329, 2011.

Dierksheide 20

Fiona Fui-hoon Nah, Venkata Rajasekhar Telaprolu, Shashank Rallapalli, and Pavani Venkata.
Gamification of Education Using ComputerGames Background : Gamification and Its
Application toEducation. http://link.springer.com/chapter/10.1007/978-3-642-39226-9
12#page-1, 2013.

"OAuth." Community Site. Oauth, n.d. Web. 23 Apr. 2014.
Ryan Swanstrom. Colleges With Data Science Degrees. Wordpress. April 9, 2012. Accessed:

April 23, 2014.
Jennifer Thom, David R Millen, Joan Dimicco, and Rogers Street.Removing Gamification from

an Enterprise SNS. In Incentives, pages1067–1070, Seattle, WA, 2012.
Nikolay Vyahhi, Phillip Compeau, Andrey Balandin, Aleksey Kladov,Ekaterina Sosa, Mikhail

Dvorkin, Sonya Alexandrova, and Mike Rayko.Rosalind. http://rosalind.info/.
Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams,DavidWithers, Stuart

Owne, Stian Soiland-Reyes, Ian Dunlop, AleksandraNenadic, Paul Fisher, Jiten Bhagat,
Khalid Belhajjame, Finn Bacall,Alex Hardisty, Abraham Nieva de la Hidalga, Marie P.
Blacazar Vargas,Shoaib Sufi, and Carole Goble. The Taverna workflow suite:
designingand executing workflows of Web Services on the desktop, web or inthe cloud.
Nucleic Acids Research.

