

Botnet IDS Using Clustering Analysis of Network Traffic

An essay submitted in partial fulfillment of

the requirements for graduation from the

 ​Honors College at the College of Charleston

with a Bachelor of Science in

Mathematics, Data Science

KAYA TOLAS

MAY 2017

Advisor: Paul Anderson

Botnet IDS Using Clustering Analysis of Network Traffic

Kaya Tollas
College of Charleston, Department of Computer Science

tollask@g.cofc.edu

1. Introduction

IoT, or Internet of Things, is expanding at an
increasing rate and setting us up to be
surrounded by smart devices. However, along
with its enormous potential for positive change,
IoT also increases threats to our privacy and
security. Security is not usually a design feature
of smart devices, many of which are designed by
manufacturers with no domain knowledge in
cybersecurity. As of now, most devices that
connect to the internet can be hacked. This lack
of IoT “public health” is the manufacturing
sector is compounded on the user side, as users
rarely change default passwords or reboot their
devices.

Bots, or remotely-controlled devices connected
to the internet, are increasingly infiltrating home
networks as smart devices (e.g. light bulbs,
refrigerators, thermostats) become more
prevalent in homes. Bots, or “zombie devices”,
communicate with their remote hosts and
receive commands to initiate activities such as
participating in DDoS (Distributed Denial of
Service) attacks, sending spam, or mining
bitcoins. While botnet structures, activities, and
network protocols can be very diverse and
sophisticated, all botnets are distinguished by
their use of command and control (C&C), the
method used to coordinate bot activities and
maintain communications with the remote
botmaster. It is relatively simple to hack IoT
devices, many of whose default security

settings can be found online, and turn them into
bots. Now that home networks are hosting
increasing numbers of devices, they can serve as
breeding grounds for sub-botnets.

In order to improve the poor state of IoT public
health and practices today, customers can
implement their own solutions until security and
privacy are the standard among manufacturers.
As the potential for intruders to penetrate more
personal networks increases, it is important that
users have an idea of what is happening on their
network.

My contribution to this effort is a clustering
algorithm for network flows that can operate
alongside any home network. The goal of this
algorithm is to cluster network flows into
suspected sub-botnets and normal flows. This
algorithm is inspired by the BotMiner
framework by Gu et al [1], which was designed
to cluster botnets with no a priori knowledge of
bot behavior and botnet structure and protocol.
Since botnets are evolving quickly and can
already be quite sophisticated, my algorithm
maintains the level of generality of the BotMiner
framework.

The main goal of this research was to produce a
simple, open-source implementation of a
network flow clustering algorithm that can be
extended and used for further research in

intrusion detection systems for botnets. The code
for this project is on Github [2].

2. Clustering Algorithm Framework and
Implementation

2.1 Program requirements
In order to run as intended, this algorithm
requires that the user install a packet analyzer
such as tshark, Wireshark’s command line tool
[3], to collect and log their network flows in the
form of .pcap files. Using tshark, users can
efficiently filter and log only relevant fields for
the algorithm, namely, packet length in bytes,
relative of capture, source and destination IP
addresses, and source and destination ports
(TCP/UDP)​. Users can also test the algorithm
using pcap files available online, such as
Wireshark’s library of sample captures [4] and
any available captured botnet traces. I obtained
the botnet traces for this algorithm from the
University of New Brunswick, whom I
contacted for access to their botnet dataset [5].
The code is in Python 3, and makes use of
Python’s pandas, sklearn, numpy, datetime, csv,
math, and matplotlib’s pyplot packages.

2.2 Flow collection and filtering
The initial stage of the algorithm is the
collection and filtering of network
communication flows. As mentioned earlier, the
fields needed by the algorithm are the source IP
and port, destination IP and port, relative times
in the capture, and number of bytes per packet.
Using tshark, users can set these filters using the
command

$ tshark -nr ​your-capture.pcap​ -T
fields -E header=y -e
frame.time_relative -e frame.len -e
ip.src -e ip.dst -e tcp.srcport -e
tcp.dstport -e udp.srcport -e
udp.dstport > ​yourPCAP.txt

This creates a tab delimited file from your .pcap
file, which is then ready for analysis in Python.
It is worth noting that although Wireshark
allows for packet payload inspection, we do not
consider this data in the algorithm as it is useless
when payloads are encrypted and is extremely
memory-intensive to store and use.

2.3 Flow aggregation into C-flows
This concept is borrowed directly from Gu et al
in their Botminer paper [1]. The algorithm filters
and aggregates network flows into “C-flows”,
which is a data structure of records from the
same source IP and port to the same destination
IP and port. The grouped C-flows then tell us
“who is talking to whom” in a given capture.
From this data structure we can calculate
statistical representations of each C-flow so that
we can subsequently perform mathematical
clustering analysis.

2.4 C-flow vectorization and smoothing
Each C-flow is then represented by a vector of
four flow statistics, as seen in Figure 1.

1. ​bytes per packet (bpp)​: total sum of bytes
divided by total number of packets sent in flow
2. ​bytes per second (bps)​: total sum of bytes
divided by duration of the flow
3. ​packets per second (pps)​: total packets in flow
divided by duration of flow
4. ​packets per flow (ppf)​: total packets in flow

Since these variables can range widely, each
C-flow is then standardized to further prepare it
for clustering analysis. This also borrows from
Gu et al.’s binning technique [1], which
generates a k-bin for each feature (bpp, bps, pps,
ppf), with k = 13 quantile values (q​5%​, q​10%​, q​15%​,
q​20%​, q​25%​, q​30%​, q​40%​, q​50%​, q​60%​, q​70%​, q​80%​, q​90%​,
q​max​) where k​1​ = q​5%​, k​2 ​= q​10%​, and so on.

Figure 1. Original vectorization of C-flow

This is calculated on vectors of feature values
(i.e. bpp, bps, fps, ppf) from all C-flows, so that
for each feature, each C-flow now has a value
of range 0-12 corresponding to its quantile as
compared to the other C-flows, as seen in Figure
2.

2.5 Clustering
The standardized C-flow vectors are then
clustered using Python’s scikit-learn (sklearn)
K-means clustering algorithm. This clusters K
similar groups based on a specified K number of
means. The goal is that C-flows containing bots
will be clustered together into sub-botnet
clusters, and regular C-flows will be clustered
separately from bot clusters. Since I trained my
algorithm using labeled botnet capture data from
New Brunswick University, I was able to test the
effectiveness of my clustering algorithm using
an entropy criterion. Upon running the algorithm
with a range of different means, I found my
clustering accuracy was optimized at 9 clusters.
I measured clustering accuracy by calculating
Shannon entropy, an information criterion based
here on the proportion of bot IPs and non-bot IPs
in each cluster.

Figure 2. Smoothed vectorization of C-flow

2.6 Cluster reports
The output of the algorithm is a data frame of
C-flows and each cluster they belong to. Using
this, users can view which flows are behaving
similarly and anomalously, and can reboot or
change the passwords on devices with IP
addresses flagged by the algorithm.

References
[1] G. Gu, R. Perdisci, J. Zhang, W. Lee.
“BotMiner: Clustering Analysis of Network
Traffic for Protocol- and Structure-Independent
Botnet Detection”. College of Computing,
Georgia Institute of Technology. 2008.
https://www.usenix.org/legacy/event/
sec08/tech/full_papers/gu/gu_html/
[2] K. Tollas. C-flowClustering (2017)
https://github.com/kayat95/C-flowClu
stering
[3] tshark: Terminal-based Wireshark
https://www.wireshark.org/docs/wsug_
html_chunked/AppToolstshark.html
[4] Wireshark: SampleCaptures
https://wiki.wireshark.org/SampleCap
tures
[5] ISCX Botnet dataset. University of New
Brunswick
http://www.unb.ca/cic/research/datas
ets/botnet.html

https://wiki.wireshark.org/SampleCaptures
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
https://wiki.wireshark.org/SampleCaptures
http://www.unb.ca/cic/research/datasets/botnet.html
http://www.unb.ca/cic/research/datasets/botnet.html
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html

