

THE RANKABILITY OF DATA: AN EVOLUTIONARY
OPTIMIZATION APPROACH

An essay submitted in partial fulfillment of

the requirements for graduation from the

 Honors College at the College of Charleston

with a Bachelor of Science in

Mathematics

Isabel K. Johnston

May 2018

Advisor: Paul Anderson

1

The Rankability of Data: An Evolutionary
Optimization Approach

Isabel Johnston

I. INTRODUCTION

A. What is Rankability?

We see applications of the science of rank-
ing every day in the world and technology
around us. From your Netflix recommenda-
tions, to the websites suggested to meet your
googling needs, ranking tactics and algo-
rithms are used to improve user experiences
in a multitude of varying domains. However,
while new and exciting approaches to ranking
are being studied, little work is being done to
research and ensure the validity and credibil-
ity of such ranking methods. This paper will
explore the measure of the rankability of data,
asking: "Does it make sense to rank this data
set?", and "What does this ranking mean?"
[1].

This paper will explore the ways in which
rankability can be quantified as a function
of a data set alone, without reliance on a
specific ranking method. This paper is largely
based on work done by Dr. Amy Langville
and Dr. Paul Anderson from the College of
Charleston, as well as Dr. Timothy Chartier
from Davidson College in their unpublished
paper The Rankability of Data [2].

B. Creating a New Pipeline

The strategy that is currently used in rank-
ing problems is displayed by the solid lines

in Figure 1. This shows a procedure without
any consideration for the rankability of a data
set, before implementing an actual ranking
method. This demonstrates the problems that
arise when no examination of rankability is
put into place. After data collection, data is
ranked and evaluated, potentially resulting in
a ranking that is not trustworthy. In order
to solve this issue, [2] has included a step
which tests for rankability before selecting
a ranking method. Therefore, with this new
pipeline, only data sets that are deemed
rankable will actually proceed to undergo a
ranking method. However, if data is found to
have low rankability, the pipeline will suggest
data refinements–collecting more data and
removing noise–leading again to the data
processing stage. This results in a process that
will continue to loop until the data is found
to be adequately rankable. [2].

II. QUANTIFYING RANKABILITY

A. What do we want out of a Rankability
Measure?

As outlined by [2], a valuable rankability
measure must satisfy these three conditions:
"(1) it must be effective, i.e., it must sync
with our intuitive binary classification of
structured datasets as rankable or unrankable;

2

Fig. 1: Improved Pipeline for Ranking. The Ranking pipeline with added rankability check.
This ensures that a data set is adequately rankable before implementing a ranking method. If data
is found to have a low rankability score, then data refinements will be made, looping through
the pipeline until it is found to have high rankability [2].

(2) it must be efficient, i.e., the time to com-
pute the measure should be reasonable; and
(3) it must be algorithm-agnostic, i.e., inde-
pendent of a ranking or ranking method"[2].
This final quality is what sets this pursuit of
rankability apart from most research. There
exists methods for determining the value
and effectiveness of certain ranking methods,
however, these are dependent on the type of
ranking used. Instead of getting a quality of
ranking: q = f(D, r) as a function of both the
data set (D) and the ranking (r), [2] aims to
develop a measure r = f(D). Thus, uniquely
retrieving a rankability measure which is de-
pendant only on a data set.

B. Rankable vs. Unrankable Graphs

The graphs in Figure 2 represent a spec-
trum of data sets and relationships that vary
from rankable to completely unrankable. The
dominance graph is intuitively the ideal and

most unquestionably rankable, with one ev-
ident ranking. On the other end, with the
completely connected graph, it is difficult to
discern a clear ranking. In fact, there are
many rankings that would have equivalent
logical values, thus leading us to believe that
there is no ranking better than the others.
Therefore, We can understand that this type
of graph would represent the other side of the
spectrum, as completely unrankable. Thus, in
order to transition from a completely con-
nected graph to a dominance graph, perturba-
tions will be required. The next section will
explain the variables used to represent these
changes and the actual measure of rankability
that has been developed.[2]

C. Rankability Measure

In this rankability measure, the variable k

will be used to represent the minimum num-
ber of changes–meaning the minimal addition

3

Fig. 2: Rankable vs. Unrankable Graphs. Various directed graphs categorized as rankable or
unrankable [2].

or removal of edges–necessary to transform
any graph into a dominance graph. This will
measure ‘how far’ a graph is from being a
completely rankable dominance graph. We
will also use variable p to represent the
number of differing dominance graphs that
can be made with only k changes. Finally,
we introduce the set P of all of the rankings
made with exactly k changes, such that p =

|P |. Using these variables, [2] has created a
rankability measure

(r =
kp

k

max

p

max

)

with k

max

as the maximum number of
changes for an n-node graph and p

max

as the
maximum number of rankings of an n-node
graph. [2]

D. Example of the Rankability Measure

On the next page, we see an example of
a directed graph expressed with nodes and

edges. Then we have the adjacency matrix
representing the directed graph to the right,
with elements in row i, column j, reflect-
ing the existence (1) or absence (0) of an
edge. Thus, a dominance graph in matrix
form would have an entire upper(or lower)
triangular of ones and entire lower(or upper)
triangular of zeroes. With this form, k can be
found by counting the number of elements
that deviate from this dominance form for
every permutation of the matrix. In this ex-
ample we see k = 4, as 4 changes are needed
to transform this matrix into a dominance
matrix. In order to do this, the three 1’s in the
upper triangle must become 0’s–subsequently
removing those edges–and 0 at (4, 1) must
become a 1–subsequently adding an edge. We
see the representation of this new graph to the
right. Thus, for this example we end up with
k = 4 and p = 6.

4

1

2

3

4

�!

2

6664

1 2 3 4

1 0 1 0 0

2 1 0 1 0

3 1 1 0 1

4 0 1 1 0

3

7775

Then find the permutations of the
adjacency matrix with lowest k value. We
find 6 such rankings...

P =

8
>>><

>>>:

3 3 3 4 4 4
1 4 4 2 3 3
4 1 2 3 1 2
2 2 1 1 2 1

9
>>>=

>>>;

2

666664

4 3 2 1

4 0 1 1 0

3 1 0 1 1

2 0 1 0 1

1 0 0 1 0

3

777775

2

666664

4 3 2 1

4 0 1 1 1

3 0 0 1 1

2 0 0 0 1

1 0 0 0 0

3

777775

1

2

3

4

E. Computing r

Through the process described above, we
can find the entire P set, from which we get
all of the variables needed for the calculation
of rankability

r =
kp

k

max

p

max

While this process returns an exact result,
in application this brute force method is far
from time efficient. The computation of all
the rankings made with exactly k changes,
the P set, requires finding all possible per-
mutations of the dominance graph. While
this is manageable for smaller graphs, as
soon as we get to graphs with 10 nodes,
the brute force program written by [2] can
take well over half an hour to get the mini-
mum k value. With a time complexity of n!,
brute force is impractical and burdensome to
use, especially when it requires unreasonable
computing time for such small graphs. In
order to develop a more functional approach
to computing these values for larger scale
conditions, it was important to pursue more
efficient methods. The main method that we
focused on, Evolutionary Optimization, is
outlined in the next section.

III. EVOLUTIONARY OPTIMIZATION

A. In General

Evolutionary Algorithms can be utilized in
a large variation of applications, however, the
underlying idea behind each of these are the
same. As you could suspect, these algorithms
work similarly to natural selection: provided
a population of individuals, under the
pressures of their environmentl, the most
fit individuals survive, thus producing a

5

Fig. 3: Evolutionary Optimization Flowchart Evolutionary algorithms typically begin with
a population which the try to improve through creating offspring by mating and mutating. The
population then updates to be the fittest overall members of both the population and the offspring,
and the process repeats until termination.

increasingly fit next generation–resulting in
an overall increase in fitness of the entire
population.

The general process for Evolutionary
Algorithms is illustrated in figure [3]. Thus,
based on the definition of fitness–dependant
on the application–a fitness measurement is
imposed on the population. Then, some of
the most fit individuals (parents) are mated
or combined together, ideally making more
fit individuals(offspring). Additionally, in
order to introduce variety and avoid local
minimums, mutations are applied to the
population. Then the best offspring compete
with the parents to become part of the next
population and this process iterates through
until a sufficiently fit population is reached.

The general process described above is
programmed in the following fashion. Evolu-

tionary Optimization (EO), first generates an
initial population P by randomly generating
n solutions. Then it evaluates the solutions
in P and updates the best solutions found
(if necessary.) As the survival of the fittest
practice goes, those with the best survival
calculation are selected and randomly paired
for combination. Each pairing generates one
or more offspring to be added to P through
mating and mutating. This process continues,
selecting a new population based off of off-
spring, until a specified stopping condition is
met and the best solution in the population P

is given as an output.

B. Evolutionary Optimization Applied to
Rankability

The use of Evolutionary Optimization
(EO) to compute a rankability score was
a promising solution to our time efficiency
problems with the Brute Force method. The

6

extremely time consuming step of the Brute
Force method is the calculation of the P

set, where it is necessary to find all of the
permutations of our dominance matrix. EO
provided a way to find the best k values
without having to calculate all of the possible
rankings. Instead, we could find the best
rankings and use the ’natural selection’ of EO
to produce the very best possible rankings.

In order to pursue a ranking value, the gen-
eral process of EO described above is applied
to our rankability problem. The initial popu-
lation P has become a random yet minimal
set of rankings for some n⇥n matrix. Then,
for rankability, our ’survival calculation’ is
the calculation of the fitness (k) for each
ranking in the population. We then take the
top rankings and mate them with the mating
method that is described below. Additionally,
in order to avoid getting stuck in a local
minimum–as a form of mutation–we throw
random rankings into the population to mate
with the rest. The results of these matings
and mutations are the offspring that then
make up the new population. This process
is continued until the entire population has
the same k value, or a certain number of
iterations is reached. We will now discuss
several options for the various steps within
this process: selection, mating, and mutating.
We will then present our Evolutionary Algo-
rithm pseudocode.

C. Selection Methods

The selection step in the Evolutionary Op-
timization (EO) method is essential to the
success of the entire algorithm, for it selects
those that will go on to make up the new
population. If this is done poorly, it can effect

the entire process. Below is the first selection
method that we came up with and the selec-
tion method that was actually implemented in
the final code.

1) Probability Calculation for Pulling
Rankings: For the purpose of the EO algo-
rithm, the probability(p

k

) that we pull a rank-
ing should be based on how good it’s k value
is. The way in which we chose to do this is by
making each ranking’s probability calculated
based on how much better it’s k is than the
very worst k value in the population (k

max

.)
Thus we have a value b where b = k

max

k

,
representing how much better k is than k

max

.
It can be intuitively understood that we

would then want a ranking k to have a
probability of being selected that is b times
more than the probability of selecting the
worst k. Thus, we want p

k

to be b times better
than p

kmax

. This gives us

(p
kmax

)(b) = p

k

! (p
kmax

)(
k

max

k

) = p

k

Finally, we know that all of the probabili-
ties of selecting each ranking must add up to
one,

1 = p1 + p2 + ...+ p

n

We the insert the equations above to get

1 = (p
kmax

)(
k

max

k1
+

k

max

k2
+ ...+

k

max

k

n

)

As an example of this selection, suppose
we have a population P of 3 rankings,
with the corresponding k values ! [2, 3, 5].
Following the selection algorithm, we have
our worst k as k

max

= 5. Thus, for k = 2,
we want the ranking represented as the first
element, to be selected 5

2 = 2.5 times more
than k

max

! (2)(2.5) = 5. Therefore we
want (p5)(2.5) = (p2), and when we plug

7

these into our equation

1 = (p5)(
5

2
+
5

3
+
5

5
) ! 1 = (p5)(2.5+1.66+1)

! 1 = (p5)(5.16) ! p5 ⇡ 0.194

Then based on the probability of selection
the ranking with the worst k, p

kmax

= p5, we
can get the probabilities of selecting the other
elements.

(p5)(
5

2
) = p2 ! (0.194)(2.5) ⇡ 0.485 = p2

(p5)(
5

3
) = p3 ! (0.194)(1.66) ⇡ 0.322 = p3

Thus with this method, we will be selecting
the ranking with k value 2 ⇡ 49% of the
time, the ranking with k value 3 ⇡ 32% of
the time, and our ranking with the worst k

value of 5 ⇡ 19% of the time.
2) Final Selection Method: While the se-

lection method above accurately represented
the variability of Evolution and natural se-
lection, it actually was working ’too well.’
When using the selection method above, the
population became populated with extremely
similar rankings. Thus, the mating only cre-
ated more of the same ordered rankings. This
resulted in convergences at local minimums,
the program would produce k values that
were far from the actual smallest possible k.

As a result, we transitioned to a more
simple, yet effective new selection method.
We directly select the rankings with the top
k values, and mate them together. We then se-
lect a set of random rankings–chosen with no
bearing on their k values, and mate them with
the population. This new selection method
served the code well, as it efficiently shocked
the population with diversity and kept it from
converging at a local minimum.

D. Mating and Mutating Methods

In our evolution optimization, we em-
ployed two different mating methods in order
to combine fit members of our population to
create equally fit offspring.

1) Borda Count: Borda Count is a rank-
ing technique that scores each element in
a ranked list based on the number of el-
ements that said element outranks. These
scores from multiple lists are then summed
to create a final score, a Borda Count, for
each element. The new list is then made by
listing the elements in descending order. [1]
While this ranking technique has promising
applications, it is easily manipulated. We
have used a similar technique, however, our
strategy provides a more accurate ranking.
Our modification of Borda Count scores each
element in a list based on it’s position in
the list. However, before totaling the element
scores, our method checks if an element has a
consistent score. If an element is consistently
at a certain score, our method will maintain
that elements score in the resulting rank.
For example, in the rankings below, 2 should

intuitively be ranked second, however, Borda
Count would put 2 in first place. Our adap-
tation of the Borda Count method would
maintain 2 in second place and use a variation
of the Borda Count scoring method to rank
the rest of the elements.

2

6664

1

2

3

4

3

7775

2

6664

1

2

4

3

3

7775

2

6664

4

2

1

3

3

7775

2

6664

3

2

4

1

3

7775

1: 3+3+1+0=7
2: 2+2+2+2=8
3: 1+0+0+3=4

8

population = [10 random permutations]
while population hasn’t converged or iterations < 20 do

for i = 1 : sizePopulation do
for j = 1 : sizePopulation do

offspring = mate(mate i, mate j)
population.append(offspring)

for i = sizePopulation do
perm = random permutation
population.append(perm)

selectTopTen(population)
k = minFit(matingArray)

Fig. 4: Above is the Pseudocode we used to calculate k.

4: 0+1+3+1=5

2) Left Tie Break Mate: Given two mem-
bers of the population we would like to mate,
if they have any element sharing the same
rank in both members, then the offspring
will also have that element in that position.
For the rest of the elements, the numbers
associated with the positions in each member
are added, divided by two, and then the
element is placed in the nearest open spot
to that number. When doing this calculation
for all members, if there is a tie, break that
tie using the member on the left.

2

6664

1

2

3

4

3

7775

2

6664

1

2

4

3

3

7775
�!

2

6664

1

2

3

4

3

7775

While in many instances, left tie break and
Borda count have the same result, our results
showed that in many cases left tie break
converged more quickly to the optimal value,
so we decided to use it for most experiments.

This method has been extremely success-

ful, we can see this in Figure 5 below, where
the pink line represents the minimum k value.
Before the first iteration, the k values vary
greatly with none of them at the minimum
k value. However, after only one iteration,
this method produces an offspring with the
minimum k value and then quickly converges
to have the entire population at the minimum
k.

Fig. 5: The Left Tie Break mating method
converges to the global minimum for k within
only one iteration in this instance.

3) Mutating: We tried many mutating
methods, but ultimately we wanted mutations

9

to add the most diverse members possible
to our population to help break out of local
minimums, so we decided our "mutations"
should be the inclusion of completely ran-
dom permutations. However, one mutating
method, other than creating random permu-
tations that arises later, is what we will call
“single swap." Single swap merely selects
two elements of our permutation to inter-
change at random. We don’t use this to create
more diverse members of the population, but
instead we use it to create similar members.

E. EO Pseudocode

As presented in figure 4, we begin with a
population of random permutations, and then
we mate all of them using a mating method
of choice, and then, to add some diversity
into the population, we add some random
permutations, the equivalent of mutating. Fi-
nally, we calculate the fitness of all offspring,
and select the best to continue. This process
continues until we reach some predetermined
number of iterations, 20 in this case, or if
our entire population has converged to some
k value. You can see the actual code from
our program shown at the end of this paper.

F. Results of EO Algorithm

We compared the performance of our evo-
lutionary optimization code with brute force,
with very positive results. Our EO computed
exact k most of the time for matrices with
size 10 and under, and ran in significantly
less time. The results can be seen graphically
in figures [6] and [7] on the next page.

G. EO for P

When we run EO on a given matrix to
calculate k, it turns out that we incidentally
find several members of the set P , and once
the algorithm terminates, we find than our
final population consists mostly of members
of P . Using the mutating method, single
swap, described above, we were able to find
many more members of P . For one sparse
matrix, using this trick alone, helped us find
1000 members of P on average per minute,
for a set P with |P | = 1.2 million. This
method effectively improves our EO code,
thus making EO more than comparable to
Brute Force.

REFERENCES

[1] Langville,Amy N., and Carl D. Meyer. Who’s
#1? : The Science of Rating and Ranking.
Princeton: Princeton University Press, 2012.
eBook Academic Collection (EBSCOhost),
EBSCOhost (accessed September 10, 2017).

[2] Anderson, P.E., Chartier, T.P., & Langville, A.N. (2018).
The Rankability of Data. Unpublished paper.

10

Fig. 6: EO vs. Brute Force k values for size
n=9

Fig. 7: EO vs. Brute Force time for size
n=9

Evolutionary Optimization Matlab
Functions

1 EO Function

tic;

%Collect information about data

[numRows, numCols] = size(D);
n = numRows;
D(1:n+1:end) = zeros(1,n); %make diagonals all 0

perm = [1:numRows];
maxP = factorial(numRows);
populationSize = 15;
maxk = numRows*numRows - numRows;

%First: Generate a population (i.e. generate rankings)
% There are numRows! possible rankings

population = [];
for i = 1:populationSize

perm = randperm(numRows);
population = [population perm];

end

%Second: Calculate fitness
%As of now, fitness = k
%Need to find a way to keep track of permuatations and their fitness

fitArray = [];
for i = 1:length(population)

perm = population(:,i);
fitness=nnz(tril(D(perm,perm)))+(n*(n-1)/2 -

nnz(triu(D(perm,perm))));
fitArray = [fitArray; fitness];

end
[fitArray, index] = sort(fitArray);

population = population(:,index);
offspringArray =[]
w=2;
fitArrayOff = zeros(1,10);

%Mating and Mutating
while w<19 & populationSize~=nnz(min(fitArrayOff)==fitArrayOff)

for i=1:length(population)
for j=1:length(population)

mate1 = population(:,i);
mate2 = population(:,j);
offspring = leftTieBreakMate(mate1,mate2);
offspringArray = [offspringArray,offspring];

end
end

fitArrayOff= [];
for i = 1:length(offspringArray);

perm = offspringArray(:,i);
fitness=nnz(tril(D(perm,perm)))+(n*(n-1)/2 -

nnz(triu(D(perm,perm))));
fitArrayOff = [fitArrayOff, fitness];

end
[fitArrayOff, I] = sort(fitArrayOff);
offspringArray = offspringArray(:,I);
offspringArray = unique(offspringArray,rows, stable);
offspringArray = offspringArray;
population = offspringArray(:,1:populationSize);
fitArrayOff = fitArrayOff(:,1:populationSize);

w=w+1;
end
k=min(fitArrayOff)
offspringArray=[];
oldPopulation = zeros(1);
z=0;

toc;

2 Left Tie Brake Mating Method

function y = leftTieBreakMate(leftMate, rightMate)

%Information needed to loop through mates.

mateDimension = length(leftMate);
usedLeftIndices = zeros(mateDimension, 1);
usedRightIndices = zeros(mateDimension, 1);

%Allocate space forr offspring
offspring = zeros(mateDimension, 1);

%If both mates agree on a ranking, the the offspring will inherit
the ranking.

for i = 1:mateDimension
if leftMate(i) == rightMate(i)
offspring(i) = leftMate(i);
usedLeftIndices(i) = 1;
usedRightIndices(i) = 1;

end
end

%when the mates do not agree on a ranking, average the positions and
use the left

%mates ranking as a tie breaker.
for i =1:mateDimension
if usedLeftIndices(i)
continue

end
for j = 1:mateDimension
if usedRightIndices(j) || leftMate(i) ~= rightMate(j)
continue

end
%when the average of left and right rankings is an integer,

and that
%position is not filled in offspring, then place in desired

place.
if mod((i+j)/2,1) == 0 && offspring((i+j)/2) == 0
offspring((i+j)/2) = leftMate(i);
usedLeftIndices(i) = 1;
usedRightIndices(j) = 1;

%when the average of left and right rankings is an integer,
and that

%position is filled in offspring, fill in next closest.
elseif mod((i+j)/2, 1) == 0
openPositions = find(~offspring);
closestPosition = openPositions(1);
for k = 1:length(openPositions)
if abs(openPositions(k) - ((i+j)/2)) < abs(closestPosition

- ((i+j)/2))
closestPosition = openPositions(k);

end
end

offspring(closestPosition) = leftMate(i);
usedLeftIndices(i) = 1;
usedRightIndices(j) = 1;

%when the average of left and right ranking is not an integer,
place in

%nearest position.
elseif mod((i+j)/2, 1) ~= 0
%Go closer to left ranking
if i > ((i+j)/2)
desiredPosition = ceil((i+j)/2);

else
desiredPosition = floor((i+j)/2);

end

if offspring(desiredPosition) == 0
offspring(desiredPosition) = leftMate(i);
usedLeftIndices(i) = 1;
usedRightIndices(j) = 1;

else
openPositions = find(~offspring);
closestPosition = openPositions(1);
for k = 1:length(openPositions)
if abs(openPositions(k) - desiredPosition) <

abs(closestPosition - desiredPosition)
closestPosition = openPositions(k);

end
end
offspring(closestPosition) = leftMate(i);
usedLeftIndices(i) = 1;
usedRightIndices(j) = 1;

end
end

end
end

y = offspring;
end

3 Borda Count Mating Method

function y = BordaMethod(mate1, mate2)

n = length(mate1)
B = [];
C = [];
F = [];

for i=1:n
if mate1(i,1)==mate2(i,1)

offspring(i,1)=mate1(i,1);
B=[B,i];

end
if mate1(i)~=mate2(i)

j=find(mate2==mate1(i));
C=[C; mate1(i),i+j];

end

end
F=sortrows(C,2);
E=setdiff([1:n],B);
j=0;

for i=E
offspring(i,1)=F(j+1,1);
j=j+1;

end

y = offspring;
end

4 Selection Probability Method

function z =probabilitySelect(firstGenFit)

%Probability of choosing a member is proportional to its fitness

distinctMeme = [];
postnMult = [];

firstGenFit
distinctMeme = unique(firstGenFit)
counts = histc(firstGenFit(:),distinctMeme)

totper = 0
maxk = max(distinctMeme)

for i = 1:length(distinctMeme);
maxovk = maxk/(distinctMeme(i,1));
totper = totper + maxovk;

end

pmax = 1/totper
pk=[]
for i = 1:length(distinctMeme);

maxovk = maxk/(distinctMeme(i,1));
pmulk= pmax * maxovk ; %pmulk total probability for all

permutations with fitness k
pk = [pk repelem(pmulk/ counts(i),counts(i))];

T = [[1:10], firstGenFit]
U = sortrows(T,2)
V = [U , pk]

