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Introduction 

 

Biomarker discovery is one of the most significant approaches for the effective diagnosis, 

prognosis, and treatment of many diseases including cancer. By identifying specific molecular 

events, physicians and scientists are able to determine a patient's medical phenotype more 

efficiently. The use of biomarkers provides powerful insight for the next steps of individualized 

treatment and personal therapy optimization [1].  Traditionally, biomarker discovery has been 

performed through differential gene expression (DGE) analysis, used to generate accurate 

predictive models for phenotypic classification [2]. However, the development of next 

generation massively parallel high throughput sequencing technology, such as RNA sequencing 

(RNA-seq), has resulted in supplementary data, including transcript start sites and splice variant 

(isoform) composition and expression [3]. This surplus of supplementary information allows for 

the generation of predictive models for genotype-to-phenotype investigations and for improved 

accuracy when compared to traditional DGE analysis. In particular, the addition of the splice 

variant (isoform) information is important to consider due to the fact that genes not only can be 

differentially expressed, due to cellular differentiation and environmental factors and disease, but 

also differentially alternatively spliced [3]. Recent studies on various mammalian tissues show 

that more than 90% of human genes exist as alternatively spliced variants [4]. In addition, it has 

been found that splicing occurs more frequently in neoplastic tissue, suggesting that alternative 

splicing events (ASE) may play a significant role to the malignant state of cancer [5]. Therefore, 

it is necessary to further the analysis of alternative splicing events to determine their non-

redundant predictive capabilities, thus verifying the significance of alternative splicing events on 

phenotype.  
 

The field of genomics is lacking an organized workflow or set of tools for the analysis of 

alternative splicing events, specifically in comparison to differential gene expression (DGE), 

with the power to create a predictive model. One of the few available open-source software 

toolboxes that are available for alternative splicing analysis, altAnalyze, is composed of several 

tools that perform different functions, such as principal component analysis, pathway analysis, 

clustering, visualizations, etc. It also provides the user with the option of using workflows to 

perform multiple different tests and analyses on the data. [6] Other current approaches for 

alternative splicing analysis exist as individual software tools that use splice variant databases as 

references. However, the capabilities of these tools, such as ALEXA-seq [4], MISO [7], and 

SpliceTrap [8], are lacking in several ways, often overlooking more complex alternative splicing 

patterns with more than two splice variants and unable to accommodate novel alternative 

splicing events that can be discovered by RNA-seq. This approach leads to a misinterpretation 

and incorrect quantification of the splicing events [9]. Another common method for alternative 

splicing analysis is the tool DiffSplice, which detects and visualizes differential alternative 

splicing through alternative splice modules or splice junctions [9]. However, all of the 

aforementioned tools and software are lacking in complete performance due to the fact that they 

are unable to create generate models from the data. Therefore, a more efficient approach for 

predictive model creation from both alternative splicing events and differential expression data 

produced by traditional next-generation bioinformatics software was sought.  
 

The toolbox presented in this paper provides a package of tools and algorithms written in 

MATLAB programming language to be used for both gene expression and alternative splicing 

analyses of genomic data, ultimately focusing on the added value of alternative splicing events 



when identifying putative biomarkers. A major feature of the toolbox is a novel multiple 

objective genetic algorithm based feature selection approach that combines alternative splicing 

events with gene expression for the generation of predictive models. Genomic sequence data is 

processed through a bioinformatic pipeline that outputs gene and isoform expression values for 

each sample. From these expression values, the relative abundances of splice variants are used to 

find alternative splicing events and are then combined with differential gene expression to create 

predictive models from orthogonal projections to latent structures discriminant analysis (OPLS-

DA) [10][11]. The results of the predictive models are compared to the ranking of independent 

alternative splicing events (IASE) and are then cross-validated to determine predictive accuracy 

and possible confounding samples. The top features of models created from IASE, ASE, and 

DGE are to be compared in order to determine similarity using a Spearman’s rank correlation 

test. Lastly, the genetic algorithm of the toolbox is used to determine the least amount of DGE 

and ASE features that would be able to generate an accurate prediction model. These significant 

features provide powerful information on the complementary and non-redundant predictive 

power of ASE. Overall the comprehensive set of tools improves the efficiency of alternative 

splicing and differential expression analysis provides a more efficient approach to experimental 

replication and can be used for similar biological studies involving DGE versus ASE analyses.  
 

  
 

Methods 

 

A. Data and Experimental Design 

 

The experimental data used to test the accuracy of the predictive model came from RNA samples 

collected from twenty-one different lung adenocarcinoma tumors with known clinical outcomes 

from the American College of Surgery Oncology group. Adenocarcinoma is the most common 

type of non-small cell lung cancer (NSCLC), accounting for 50% of NSCLC cases. Out of the 

twenty-one RNA samples, ten of them were derived from patients who developed cancer 

recurrence within three years of their initial surgical resection (R, Relapse). The remaining 

eleven samples were derived from patients who remained disease free (DF) after three years. 
  
RNA integrity was verified on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, 

CA). 100-200 ng of total RNA was used to prepare RNA-Seq libraries using the TruSeq RNA 

Sample Prep Kit following the protocol as described by the manufacturer (Illumina, San Diego, 

CA). Three samples per lane were clustered on a cBot as described by the manufacturer 

(Illumina, San Diego, CA). Clustered RNA-seq libraries were paired-end sequenced with 2X100 

cycles on a HiScanSQ. Demultiplexing was performed utilizing CASAVA to generate Fastq 

files, which contain the whole transcriptome sequences. 
 

B. Next Generation Processing 

 

The Tuxedo pipeline [12] was used to map sequenced reads of mRNA to the human genome 

(hg19, UCSC) and deterministically quantify the amount of transcripts for each isoform and gene 

product. The tool Cuffdiff was then used to statistically analyze the differential expression of 

genes and isoforms between the two phenotypic groups: Disease Free (DF) and Relapse (R). The 

resulting data was investigated using CummeRbund [13], a RNA-seq data analysis package in R. 



The overall procedure of processing the RNAseq data was organized into a  bioinformatic 

pipeline on a local instance of a Galaxy Project server [14]–[16]. Two RNAseq data files, 

containing forward and reverse reads, were generated from each of the RNA samples using 

paired end (PE) sequencing. FastQC [17] was used to visualize the quality of the sequenced 

RNA for each dataset. Each set of PE read files was run through Trimmomatic [Lohse] to 

remove low quality base pairs and sequence adapters (synthetic sequences of DNA that are used 

to amplify and sequence the cDNA during RNA-seq) using these parameters 

[ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20 

MINLEN:36]. The Trimmomatic website provides detailed information on the parameters used. 

 

 

Trimmomatic filters and trims reads to generate high quality sequencing data from each PE reads 

file. The Galaxy tool, FastQ Groomer, was used to convert the format of datasets from Illumina 

to Sanger data format for downstream processing. TopHat 2 (v0.5) [12] was used to map the PE 

files to the human genome (hg19) with default parameters. TopHat outputs a binarily compressed 

sequence alignment/map (BAM) file containing the accepted transcript alignments. The aligned 

transcripts were then assembled into unique isoforms, characterized by gene, and quantified to 

ascertain gene and isoform expression values using Cufflinks (v2.1.1) [13], while performing 

bias correction, quartile normalization, and multi-read correction. hg19 was used for the 

reference genome (FASTA format) and annotation (GTF format). The assembled isoforms from 

each of the RNA samples were aggregated using CuffMerge (v1.0.0) [12] without reference 

annotation or sequences. Cuffdiff (v2.1.1) [12] was used to analyze the the samples as a whole, 

while performing bias correction, quartile normalization, and multi-read correction. The tool 

takes as input the aggregated isoforms GTF file from CuffMerge and the aligned transcript files 

from TopHat, which were specified as being one of two phenotypic groups: Disease Free (DF) 

and Relapse (R). 

  

 

C. Exploratory Data Analysis 

  

In order to understand the data more appropriately before training the predictive models, 

unsupervised exploratory data analysis was performed on the complete DGE and ASE datasets. 

These analyses included hierarchical clustering and principal component analyses (PCA). The 

CummeRbund package [13] was used to create expression value matrices for both DGE and ASE 

by using the output of Cuffdiff, which is represented as average linkage of exon per million 

fragments mapped (FPKM) values. The MATLAB bioinformatic toolbox used these DGE and 

ASE expression value matrices to perform both hierarchical clustering analysis and PCA analysis 

[20]. The results of these unsupervised analyses generated visualizations that aided in the 

understanding of the data. The PCA analyses visualized the gene expression and alternative 

splicing data by transforming the data into a new coordinate system, where each new dimension 

was computed as a linear combination of the original values in order to best explain the overall 

variance in the data [21]. Hierarchical clustering was achieved from heat map clustering using 



the respective FPKM values for DGE and ASE. 
  

1. Gene Expression Data:  Using the FPKM values of the genes and isoforms from the output of 

CummeRbund, DGE and ASE expression value matrices were created by Cuffdiff. The tool did 

not incorporate genes that were deemed invalid from differential expression analysis into 

subsequent analyses (genes labeled "NOTEST"). The remaining genes and isoforms were 

normalized to unit variance and mean centered (i.e., auto-scaling). Genes that had only one 

single isoform (no alternative splicing events) were removed from the dataset to provide a fair 

comparison of the gene sets generated with predictive models of DGE versus ASE. The resulting 

FPKM expression dataset forms a normalized expression matrix (NEVM) of each gene per 

sample. 

 

 2. Alternative Splicing Data: In order to analyze differential alternative splicing events without 

being affected by the differential absolute expression of isoforms, the differences of the relative 

abundances of isoforms for each gene was calculated, thus removing the effect of differential 

expression between phenotypes. For example, consider a gene with three isoforms, where one of 

the isoforms accounts for 71% of the total amount of isoform expression and the other isoforms 

account for the remaining 29%. The relative abundances of isoforms must be different between 

phenotypes (e.g., isoform relative expression increases from 43% to 52%, in this case), in order 

for the gene to be considered a differentially alternative splicing event. This difference could 

result in an overall change in expression or it could be an independent event. A sample gene 

(FAM111B) that consists of three isoforms and shows a relative increase of expression of 

isoform NM_198947 (43% to 52% between DF and R) is shown in Figure 1. As expected, the 

other isoforms, NM_001142703 and NM_001142704, show a decrease of relative expression 

between DF and R from 55% to 45% and 58% to 42% respectively. Differentiating between the 

differential expression events and alternative splicing events creates complementary features for 

subsequent machine learning algorithms. The resulting dataset forms an isoform composition 

value matrix (ICVM) of each isoform per sample: 

  

 

 
 

  

where ICVMi,j is the isoform composition value for the jth isoform and the ith gene and m is the 

number of isoforms for the gene i. 

 



 

Fig. 1: The splice graph of FAM111B isoforms and their absolute expression values. The relative 

abundance of the NM_198947 splice variant is different between phenotypes, indicating an ASE.  

 

 

3. Combined DGE and ASE: A third matrix was generated using the combined matrices of the 

NEVM and the ICVM in order to further analyze the role of DGE vs ASE when compared in the 

same analytical test. By combining the two expression matrices, there are 24,427 features of 

genes and isoforms. All of the tools discussed in this paper can take the combined data matrix as 

input to compare the resulting significance of DGE vs. ASE.  

 

 

 

D. Analytical Tools 

 

1. T-Test Tool to Detect Independent Alternative Splicing Events 

 The toolbox includes a two-sample t-test tool for samples with equal but unknown variances that 

determines the statistical difference of each feature between the two phenotypic groups (DF and 

R). It uses the respective expression value matrices (NEVM and ICVM) as input to identify 

significant differential expression events and more importantly, independent alternative splicing 

events (IASE). The two-sample t-test looks at each feature and determines how statistically 

different the two phenotypes are based on a false discovery rate of 0.05. The tool then generates 

a sorted list of features using the obtained p-value to rank the level of statistical difference 

between the two classes. The tool is also able to create a bar plot for a specific feature or set of 

features to visualize the statistical difference between the two phenotypes. Error bars were added 

to the bar plots using the standard error of the mean calculation.  

 

 



2. OPLS-DA 

The OPLS-DA tool was created to generate predictive models of lung cancer recurrence using 

orthogonal projections to latent structures discriminant analysis (OPLS-DA) [10], [11], which is 

a supervised, multivariate modeling technique used to determine the variation within X or the 

expression/ alternative splicing data that is correlated to Y or the class labels, in this case, 

phenotype. A second variation within X that has nothing to do with Y (e.g. noise) was filtered 

out resulting in a single latent vector (LV), analogous to a principal component in PCA. 
 

Once generated, the models are cross-validated to find classification accuracy, where one sample 

from each phenotype is repeatedly left out at random for validation. The process can be iterated a 

variable number of times but in this experiment it was repeated 200 times. The individual results 

of this repeated process is recorded to identify the average prediction accuracy for each sample. 

This resulting data can then be used to find the effectiveness of the predictive models and to 

identify potential confounding samples. 
 

3. Feature Masking Tool via Genetic Algorithm 

Hybrid genetic algorithms (GA)/Bayesian classifiers have previously been applied to medical 

and biological datasets in order to obtain a reduced set of putative biomarkers for phenotype 

classification [22]. A feature selection tool was implemented via a multiple objective genetic 

algorithm that attempts to minimize the number of features included in the model while still 

maximizing the cross-validated coefficient of determination (R
2
):  

 

 
 

where SSRes is the sum of squares of residuals and SStot is the total sum of squares, which is 

defined as the sum of the squared differences of each observation from the overall mean [23]. 
 

The chromosome of the GA consists of a bit vector, where each bit corresponds to a single 

feature. Specifically, in this experiment, there are 6,203 gene expression features and 18,224 

alternative splicing event features derived from the same set of genes. Thus, the genetic 

algorithm has no bias towards selecting more expression or alternative splicing events. When the 

bit is set to 1, the classifier includes the gene expression feature or alternative splicing event 

feature, otherwise the feature is ignored and removed from the model. The GA population 

consists of 20 initially random bit vectors containing on average 100 features enabled. In each 

generation, the four most fit individuals survive without modification. The 1-point recombination 

operator accounts for the remaining 80% of the population in successive generations. The GA 

employs a stochastic universal sampling operator for parental selection prior to recombination. 

The mutation operator employs a Gaussian distribution to select bits for mutation. Selected bits 

are simply flipped. Evolution proceeds for a maximum of 200 generations, though it is halted if 

no improvement in the average spread of the Pareto solutions is obtained for 50 consecutive 

generations [23].  
 

The two main objectives of the fitness function are (1) to maximize the cross-validated R
2
 of a 

feature masked OPLS-DA model, and (2) to minimize the number of features included in the 

model. Additional benefits of the GA are that feature masking improves interpretability by 



removing features with little or redundant impact on the classification accuracy. The average 

number of features selected over the validation procedure was measured, and the average 

percentage of those features that are ASE was also measured. These summary statistics were 

calculated using the solution on the Pareto front that resulted in the maximum R
2
. The reduced 

set of genes generated by the GA serve as novel, putative biomarkers from both gene expression 

and alternative splicing events that can later be tested during subsequent validation studies.  
 

 

 

Results 

 

A. Unsupervised Analysis 

 

After performing the cluster analysis and PCA, it was determined that these two unsupervised 

analyses did not show distinct phenotypic groups based on DGE or ASE prior to creating the 

predictive model. Heat maps were generated to show the hierarchical clustering of the biological 

samples (Figure 2 - DGE(a), ASE(c)). The PCA scores plot using DGE data (Figure 2(b)) shows 

a general clustering according to phenotype, but with several samples incorrectly clustering with 

the opposing class (e.g., DF with R group [DF6]; R with DF group [R7]). However, the PCA 

scores plot based on ASE (Figure (d)) does not show distinct clusters by phenotype. Further 

investigation of the analyses showed that several of the sample profiles are consistent with the 

other phenotype. This could be a result of confounding factors such as misclassification, tumor 

vs. stromal cell content, unique oncogene drivers or tumor suppressor gene los



 

 
 

B. Predictive Models and Analysis 

 

OPLS-DA predictive models were generated using the three inputs of alternative splicing events, 

differential expression, and the combined dataset of both ASE and DGE. The three models 

resulted in a cross-validated R
2 
of 0.16, 0.07, and 0.09, respectively. The cross-validated 

accuracy of the three methods were 0.63, 0.90, and 0.84, respectively. The reason that the cross-

validation summary statistics are low is most likely due to uniformly poor performance o a small 

subset of samples that exhibit profiles of the alternative phenotype.  
 



 
Figure 3: A combined scores plot visualizing the performance of models created from DGE and 

ASE during cross-validation. 
 

 

An additional feature of the toolbox is a tool to generate a combined scores plot, which shows 

the compared performance of two methods, i.e., ASE vs. DGE, ASE vs. Combined, etc. The plot 

shows the predicted values for differential expression and alternative splicing OPLS-DA models 

(Figure 3), where the unlabelled circles are training samples that have been predicted via the 

iterative cross-validation described above. The label data points on the plot represent the 

validation set that was withheld during each iteration. It is apparent from the diminished 

separation between the groups that over-fitting occurred. The over-fitting would be due to the 

high-dimensionality of the data set relative to the sample size and the influence of confounding 

samples. The separation on the y-axis is entirely a result of the ASE. Conversely, the separation 

on the y-axis is entirely due to the DGE profiles. While both methods provide discriminant 

information between the two phenotypes, the information is not redundant, since the Pearson 

correlation, ρ, is between the alternative splicing y‐predicted and differential expression y‐
predicted is 0.896. The average performance per sample for each model was investigated to 

measure the influence of these and other samples on the model. As mentioned above, the cause 

for misclassification would most likely be a result of confounding factors such as 

misclassification, tumor vs. stromal cell content, unique oncogene drivers or tumor suppressor 

gene loss.  
 

 

 

C. Comparing Alternative Splicing Event Sets 

 

Using the results produced by OPLS‐DA to obtain the average rank of genes, isoforms, and 



combined genes and isoforms, as well as the resulting p-values obtained from the two-sample t-

tests on DE and ASE, the top 100 genes and isoforms for each test were determined. There were 

49 genes and 66 isoforms that overlap in the list of the top 100 genes and isoforms, respectively, 

for OPLS-DA and the t-test. A Wilcoxon signed rank test on the distribution of absolute 

difference in rank order indicates that the overall rank order is significantly different between 

results from predictive modeling versus independent alternative splicing event identification (p < 

0.001). This indicates that putative biomarker identification for our predictive model that uses a 

combination of multiple ASE to predict recurrence of lung cancer differs from the markers 

selected independently. 
 

The top 100 genes and/or isoforms generated from the combined dataset of NEVM and ICVM 

resulted in a combination of both genes and isoforms. This indicates that the information 

contained in ASE is representative of a non-redundant set of genes correlated to phenotype and 

that ASE provides independent, supplementary information to DGE.  
 

A heat map of the samples using the top 100 ranked genes from DGE and ASE predictive 

models during cross-validation is shown in Figure 4. As shown in the heat maps, there is a 

stronger cluster to phenotype association for ASE. Though DF samples do not form a distinct 

cluster based on ASE, R samples form a definitive phenotype cluster. This suggests that 

clustering by ASE features removes some of the contra-clustering noise from analysis. For these 

reasons, ASE features, such as those shown in Figure 4, provide useful, new information that can 

be used to create predictive models and find putative biomarkers that are non-redundant with 

those found with traditional DGE analysis. 
 

 
Fig. 4: Heatmap samples using top 100 ranked genes from (a) expression profiles and (b) 

alternative splicing event based predictive models.  
 

 

D. Putative Combined Biomarkers via Feature Masking 

 

The multiobjective genetic algorithm was used to generate subsets of putative genes and 



alternative splicing events that could be identified as potential biomarkers, by maximizing the 

cross-validated R
2
, while minimizing the number of genes and alternative splicing events 

included in the model. During the cross-validation iterations, the genetic algorithm terminated 

before the maximum number of generations was reached as the average change in the spread of 

the Pareto solutions was less than the specified tolerance. Feature selection was carried out 

simultaneously on an equal number of DGE and ASE features. If the gene expression data was 

consistently more predictive of the two phenotypes, the algorithm would show a distinct bias 

towards those features; however, after aggregating the results from the cross-validation 

iterations, the average percent of ASE features included was 46%. Further, the average number 

of features selected was 213 (i.e., features not masked). The feature selection resulted in a slight 

decrease in accuracy from 76% to 68%, but reduced the number of putative biomarkers from 

>24,000 to approximately 200 genes. The near equal selection of alternative splicing events and 

gene expression profiles indicates that alternative splicing analysis provides a complementary 

and non-redundant set of features for lung adenocarcinoma diagnosis and phenotype 

classification. 
 

 
 

Fig. 5: Sample visualization of multiobjective genetic algorithm output, including the plot of 

Pareto front, and Rank of Individuals.  
 

E. ROC Curve to Visualize Performance 

 

In order to visualize performance of the implemented methods, a Receiver Operating 

Characteristic (ROC) curve feature was added to the toolbox. An ROC curve is a graphical plot 

that shows the performance of a binary classifier system as its discrimination is varied, by 

plotting the fraction of true positives versus the fraction of false positives [24]. As shown in 

Figure 5, ROC curves were generated using the results of the OPLS-DA models for (a) DGE, (b) 

ASE, and (c) Combined data. The figures were created using the leave-one-out cross-validated 

raw test data. The general shape of the resulting plots is what is expected to be generated from a 

relatively accurate predictive model.  
 

 



 
 

 
Fig. 6: The ROC curves illustrate the performance of classification by OPLS-DA for ASE, DGE 

and the Combined data, respectively. The graphs plot the fraction of true positives vs. the 

fraction of false positives, where Relapse represents the positive class.  
 

 

Conclusion 

 

The toolbox presented in this paper would offer a new analytical approach to bioinformatic 

analyses, while improving the efficiency of experimental design by offering a comprehensive set 

of tools. The novel method of this study combines alternative splicing events and differential 

gene expression data to determine whether specific patterns exist that are representative of lung 

cancer and correlate with tumor aggressiveness and patient prognosis. By identifying splice 

variants associated with either indolent or aggressive cancers for the selection of patients that are 

more likely to have their cancer relapse, physicians and researchers can more readily understand 

the disease and can offer more aggressive treatment to those affected. This approach to treatment 

has the potential to significantly improve response rates and patient survival. In addition, the 

identification of specific alternatively spliced variants offers a new resource for novel biomarker 

and therapeutic targets. Previous research in the field has only involved the functional role of 

individual splice variants in cancer progression, but the possible association of splice variant 

signatures with patient outcome had not yet been examined [22]. This study clearly addresses a 

area in cancer research that needs to be further researched and understood. Thus, because the 



tools and features of this toolbox can also be applied to any similar biological data involving two 

phenotypes, it has the potential for significant clinical care improvement. 
 

 

By comparing predictive models created from two types of alternative splicing analysis to a 

predictive model created from differential gene expression, it can be shown that ASE analysis 

provides non-redundant and complementary features which can be used for predictive models. 

Our genetic algorithm showed that ASE features contribute approximately the same to a feature 

masked predictive model as DGE features do. Cross-validation of OPLS-DA models from DGE 

and ASE showed that some samples consistently failed to be predicted, whereas for other 

samples predictive accuracy was model dependent; thus indicating that the features from DGE 

and ASE have complementary predictive power. A Wilcoxon signed-rank test showed that the 

top 100 significant features from ASE and DGE predictive models were significantly different, 

further supporting the claim that predictive features of lung adenocarcinoma are driven by ASE. 
 

Future investigations will include validation of ASE and DGE phenotype predictive features, an 

analysis comparing the enriched gene sets and pathways affected by ASE and DGE features, 

performance of ASE predictive models on other disease phenotypes and measuring the effect of 

sequencing coverage on predictive model accuracy. Combining the rank orders of the ASE and 

IASE when selecting genes for validation is advised. Real time PCR or NanoString nCounter 

Analysis System (NanoString Technologies, Inc., Seattle, WA) analyses will be used for 

validation using additional DF or R patient RNA samples. 
 

The results obtained from the analytical toolbox used in this study have shown that ASE is an 

important tool to be considered when creating predictive models for disease phenotype 

prediction. Not only were models created, but driving features were also identified. These 

specific features can be deemed as biomarkers and will be further investigated and used for 

future pathological and molecular investigations. The methods described can be used to predict 

other disease phenotypes as well, adding to the bioinformatic toolbox used by clinical 

researchers in pathology, functional genomics, and systems biology. A future goal would be to 

have the machine learning toolbox made publicly available to aid in the generation of predictive 

models and biomarker identification.  
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